
Softened spin-wave dispersion and sublattice magnetization at finite temperature for a three-

dimensional anisotropic Heisenberg antiferromagnet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 115

(http://iopscience.iop.org/0953-8984/13/1/312)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 08:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 115–122 www.iop.org/Journals/cm PII: S0953-8984(01)14429-2

Softened spin-wave dispersion and sublattice
magnetization at finite temperature for a
three-dimensional anisotropic Heisenberg
antiferromagnet

Jin An1,2, Chang-De Gong3,1 and Hai-Qing Lin2

1 National Laboratory of Solid State Microstructures and Department of Physics,
Nanjing University, Nanjing 210093, China
2 Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
3 Chinese Centre of Advanced Science and Technology (World Laboratory),
PO Box 8730, Beijing 100080, China

Received 2 June 2000, in final form 11 October 2000

Abstract
We study a three-dimensional anisotropic quantum antiferromagnetic Heisen-
berg model at finite temperature in which the interplanar coupling can be varied
gradually. With the magnon interactions considered, we have calculated the
spin-wave excitation and sublattice magnetization. We find that when the
interplanar coupling increases, the Néel ordered state is stabilized gradually.
Moreover, we find power laws at low temperatures: a T 4-law for the spin-wave
excitation, and a T 2-law for the sublattice magnetization, which is consistent
with the nuclear magnetic resonance experiments on antiferromagnets. The
interplanar coupling dependences of the finite-temperature spin-wave excitation
and magnetization are also given.

1. Introduction

Since the discovery of high-temperature superconductors, a great deal of theoretical interest in
the physics of quantum antiferromagnets has arisen since the undoped mother materials like
La2CuO4 were found to be well described by a square-lattice spin-1/2 antiferromagnetic (AF)
Heisenberg model. Now it is widely accepted that the ground state of the spin-1/2 square-
lattice Heisenberg antiferromagnet exhibits the Néel long-range order [1–3], with the sublattice
magnetization reduced by quantum fluctuation to about 0.303. Until now, most theoretical
work has concentrated on the properties of the ground state of the model. Many methods have
been developed to investigate them, including 1/S expansion (the Holstein–Primakoff (HP) or
Dyson–Maleev method) [4–6], Monte Carlo calculations [7–10], exact diagonalizations [11],
extended Jordon–Wigner transformation [12] and others [13–17]. However, finite-temperature
properties have been studied very little. This is possibly due to the Mermin–Wagner theorem
[18] which states that at finite temperatures no true long-range AFM or FM orders can exist
in a 2D quantum Heisenberg model.
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Nevertheless, on one hand, from experiments based on susceptibility measurements [19]
and neutron scattering [20], it has been shown that there exists a Néel ordered temperature
TN below which materials like La2CuO4 exhibit a 3D long-range AF order even at rather
high temperatures. On the other hand, Cu NMR measurements on antiferromagnets have
been reported in recent years for the layered materials La2CuO4 [21], YBa2Cu3O6 [22]
and Ca(Sr)CuO2 [23] which strongly suggest a T 2-law for the low-temperature sublattice
magnetization up to approximately TN/2, where TN is the Néel temperature. These materials
can all be seen as 2D AF layers, which are coupled to their nearest neighbours by the
effective interplanar couplings. Thus it seems more appropriate to interpret this and other
finite-temperature features of La2CuO4 in the framework of an anisotropic 3D AF Heisenberg
model [24].

The purpose of this paper is to investigate how the interplanar coupling affects a 2D
antiferromagnet by studying a 3D anisotropic AF Heisenberg model. Actually, we study a
more general problem, where the interplanar coupling can vary from zero to a finite value.
When the interplanar coupling is absent, we turn to the 2D isotropic AF Heisenberg model. In
this situation, we find that the Néel ordered state is unstable at finite temperature to the quantum
fluctuations, which is in agreement with the Mermin–Wagner theorem. When the coupling
increases, the Néel ordered state is stabilized gradually. In another limit, where the interplanar
coupling is identical to the intraplanar coupling, we have a 3D isotropic AF Heisenberg model,
which can be quite well described by the linear spin-wave theory, together with the zero-point
contributions from magnon interactions.

At finite temperature, magnons will be excited from the ground state and they will
interact with each other and then cause nontrivial corrections to the physical properties of
the system. In this paper, we consider these interactions between magnons and investigate
what contribution is given to the temperature-dependent part of the spin-wave excitation and
sublattice magnetization and then compare the results with experiments.

2. The model

The Hamiltonian of a 3D anisotropic quantum Heisenberg antiferromagnet is defined by

H = J
∑
〈i,j〉‖

Si · Sj + J⊥
∑
〈i,j〉⊥

Si · Sj (1)

where a cubic crystal structure is assumed and 〈i, j〉‖, 〈i, j〉⊥ indicate sums over pairs of
nearest neighbours in the same horizontal planes or along the axes perpendicular to the planes,
respectively. What should be noted is that although the interplanar coupling J⊥ may be rather
small, compared to the exchange constant J , it is required for the appearance of a 3D long-range
AF order at finite temperatures [25].

The presence of the Néel long-range order suggests that the spin-wave expansion (1/S
expansion) makes sense. Actually, it has been reported that the linear spin-wave theory—
the leading order of the 1/S expansion—gives good results, although the whole expansion
would be divergent [4]. Therefore, here in this paper we employ an improved linear spin-wave
approach to investigate this problem.

Dividing the system into two sublattices (A and B) and performing the HP transformation,
we can express the spin operators in terms of sublattice boson operators ai , bi and their
conjugates:

S+
ai = (S−

ai)
+ =

√
2Sfi(S)ai

SZ
ai = S − a+

i ai
(2a)
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and

S+
bi = (S−

bi)
+ =

√
2Sb+

i fi(S)

SZ
bi = −S + b+

i bi
(2b)

with

fi(S) =
√

1 − ni

2S
= 1 − 1

2

ni

2S
− 1

8

(
ni

2S

)2

+ · · · (3)

where S = 1/2, and ni = a+
i ai or b+

i bi is the particle number operator for site i. Substituting
equations (2) and (3) into equation (1), and performing Fourier transformation, we have the
following Hamiltonian in k-space:

H = −NJ

2

(
1 +

λ

2

)
+ H0 + HI (4)

where N is the number of sites and λ = J⊥/J is defined as a coupling parameter. H0, HI read

H0 = 2J
∑

k

{(
1 +

λ

2

)
(a+

kak + b+
kbk) + γk(akb−k + h.c.)

}
(5)

HI = −2J

N

∑
k1,k2,q

{γ−k1a
+
k1+qaq−k2ak2bk1 + γ−k1+qa−k1+qb

+
k2+qbk2bk1

+ 2γqa
+
k1−qb

+
k2+qbk2ak1 + h.c.} (6)

where the sums are over the whole magnetic Brillouin zone and γk is defined by

γk = γ
(1)
k +

λ

2
γ
(2)
k

with γ
(1)
k = 1

2 (cos kx + cos ky), γ
(2)
k = cos kz. The part H0 refers to the freely propagating

magnons and the part HI refers to the various processes of interaction between the magnons.

3. Results and discussion

Because of the interactions, magnons would be created or annihilated, but the total momenta
are still conserved. The lifetime of the magnons would be finite due to this damping effect.
Thus we would like to find another kind of quasi-particle to account for the low-temperature
excitation. In order to do this, we introduce another two quasi-particle operators by performing
Bogoliubov transformation:

αk = ukak + vkb
+
−k

β+
k = vkak + ukb

+
−k

(7)

where the coefficients uk, vk are related by u2
k − v2

k = 1, and will be determined later by
using the condition that αk is a quasi-particle operator and its equation of motion should be
diagonalized.

Now we construct the equation of motion for the operator αk and then diagonalize it.
However, in solving the equation of motion

ih̄
∂

∂t
αk = [αk, H ]

one encounters commutators like [αk, a
+
k1b

+
k2ak3ak4]; they have to be treated approximately.

Here, we adopt a mean-field approach. We calculate all kinds of commutators like
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[αk, a
+
k1b

+
k2ak3ak4] and then combine every possible pair of operators into their averages

to decouple the three-operator terms in the final result. This method is quite different
from that employed by other authors in deriving physical properties of the model at zero
temperature, where zero-temperature Green’s functions are used to perform perturbations of
the 1/S expansion [5, 6]. Moreover, in the analysis there, quasi-particle representation has
been used and thus very complicated vertex functions introduced in the interactions part of the
Hamiltonian; this causes the analysis there to be much more complicated. Here, we do not
substitute the transformation of equation (21) into the Hamiltonian and just retain the magnon
representation in it.

Because the number and momentum of magnons are always conserved (note that
annihilating a magnon in an A sublattice corresponds to a process of creating a magnon in a
B sublattice), in the decoupling processes here, only the pair averages like 〈aqb−q〉, 〈a+

qaq〉,
〈b+

qbq〉 and their conjugates do not vanish, and they can be given by

〈a+
qaq〉 = u2

q〈α+
qαq〉 + v2

q〈βqβ
+
q〉 = 〈b+

qbq〉
〈aqb−q〉 = −uqvq(〈α+

qαq〉 + 〈βqβ
+
q〉).

(8)

Thus all of the possible types of four-operator commutator can be calculated and finally we
obtain the commutators of αk and the interaction part of the Hamiltonian as follows:

[αk, HI ] = 2J

{
4

N

∑
q

(
γq〈aqb−q〉 +

(
1 +

λ

2

)
〈a+

qaq〉
)
(−αk(u

2
k + v2

k) + β+
k2ukvk)

+
4

N

∑
q

(γk+q〈aqb−q〉 + γk〈a+
qaq〉)(αk2ukvk − β+

k(u
2
k + v2

k))

}
(9)

where the equations 〈a+
qaq〉 = 〈b+

qbq〉 have been used in order to derive the above equation. It
can be seen that in order to make αk a true quasi-particle operator, one has to arrange for the
cross-terms to be eliminated. Note that∑

q

γ
(i)
k+qf (q) = γ

(i)
k

∑
q

γ (i)
q f (q) (i = 1, 2) (10)

where f (q) is an any function of q with the symmetry of the crystal. Thus the two coefficients
can be determined to give

uk =
{

1

2

(
1√

1 − (�k/�0)2
+ 1

)}1/2

vk = sgn(�k/�0)

{
1

2

(
1√

1 − (�k/�0)2
− 1

)}1/2
(11)

where

�k = γk

(
1 − 4

N

∑
q

〈a+
qaq〉

)
− 4

N

∑
q

γk+q〈aqb−q〉. (12)

The spin-wave dispersion of the antiferromagnet can then be evaluated to give

Ek = 2J
√
�2

0 − �2
k. (13)

This gapless excitation is quite different from that calculated from the linear spin-wave
theory for it has included the effect of the magnon interactions. Introducing two gravity
parameters f and g, which are constants but dependent on the interplanar coupling, we find
that �k can be written generally in the following form:

�k = f γ
(1)
k +

λ

2
gγ

(2)
k (14)
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where f and g can be shown to be determined by the following two self-consistent equations:

f = 2 − 1

(f + λg/2)

2

N

∑
q

(1 + 2nB(Eq))Eq/2J

g

2
= 1 − 1

N

∑
q

2J

Eq

(1 + 2nB(Eq))

{
f [1 − γ (1)

q γ (2)
q ] +

λ

2
g[1 − (γ (2)

q )2]

} (15)

with Eq given by equation (13). In the long-wavelength limit, we have a photon-like energy
dispersion:

Ek =
√
c2

1(k
2
x + k2

y) + c2
2k

2
z

where

c1 = J
√
f (2f + λg)

c2 = J
√
λg(2f + λg)

(16)

are the two spin-wave velocities within or perpendicular to the planes, respectively. These two
velocities at zero temperature, c10, c20, as functions of the interplanar coupling are also shown
in figure 1 (triangles). It can be seen from the figure that, although, as a matter of fact, the spin-
wave excitations will be softened at finite temperature, there are still positive corrections to
the two spin-wave velocities due to the zero-point contribution from the magnon interactions,
compared with that calculated from the linear spin-wave theory. When the interplanar coupling
is not very small, i.e. J⊥ is more than about 0.1J , the two spin-wave velocities increase almost
linearly with the increasing interplanar coupling. Finally, they reach the same value for the
3D isotropic AF Heisenberg model: c1 = c2 = 1.900J . The spectrum in this limit can
also be written in the form of a renormalized antiferromagnetic spin-wave dispersion with the
renormalized factor given by η = 1.097, which is relatively small, compared to the 2D case
where the renormalized factor η = 1.158.

Figure 1. The interplanar coupling dependence of the anisotropic spin-wave velocities (triangles).
The solid lines show the corresponding quantities calculated from the linear spin-wave theory.
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At low temperature, the velocities can be expanded in powers of kBT/J ; the results can
be given as the T 4-laws stated below:

c1 = c10{1 − A(kBT/J )
4}

c2 = c20{1 − B(kBT/J )
4} (17)

where the two coefficients can be evaluated from

a = 4π2

15
(2f0 + λg0)

−5/2f −1
0 (λg0)

−1/2

b = π2

45
(f0 + 2λg0)(2f0 + λg0)

−5/2f −1
0 (λg0)

−3/2

A = 1

2
{a(4f0 + λg0) + bλf0}f −1

0 (2f0 + λg0)
−1

B = {ag0 + b(f0 + λg0)}g−1
0 (2f0 + λg0)

−1

(18)

where f0 and g0 are the values of f and g at zero temperature. The numerical results for
the two coefficients A and B as functions of the interplanar coupling are shown in figure 2.
On one hand, all the coefficients are divergent in the limit of zero interplanar coupling. This
property is due to the dimensionality effect, for the interplanar coupling has changed the 2D
system into a 3D one, which is consistent with the Mermin–Wagner theorem. On the other
hand, the coefficients decrease quickly with increasing interplanar coupling. This indicates
that the thermal fluctuations are suppressed by the increasing interplanar coupling, which is
just what is expected, for fluctuations are more important in low dimensions. Furthermore,
the interplanar coupling has stabilized a Néel ordered state at finite temperature and, at low
temperature, the sublattice magnetization also follows a power law (T 2-law):

m(T ) = m(0) − p(kBT/J )
2 (19)

where m(0) is the zero-temperature magnetization and is given by

m(0) = 1 − 1

N

∑
q

1√
1 − (�q/�0)2

. (20)

The interplanar-coupling-dependent coefficient p can be evaluated from

p = 1

12
(2f0 + λg0)

−1/2f −1
0 (λg0)

−1/2. (21)

Figure 3 shows the zero-temperature sublattice magnetization as a function of the
interplanar coupling (circles). The magnetization increases gradually from 0.303 for the 2D
isotropic case to 0.422 for the 3D isotropic case, which indicates that the quantum fluctuation
is suppressed with increasing interplanar coupling, consistently with the result derived above.
Nevertheless, compared with that calculated from the linear spin-wave theory (triangles), the
magnetization increases by a small amount due to the zero-point contribution from the magnon
interactions (see figure 3). This enhancement seems to be independent of the interplanar
coupling, i.e. it is uniform, although its magnitude varies continuously. This can be understood
by assuming that the magnon interactions give a positive contribution to the effective exchange
coupling. The coefficient p is shown in figure 2 (triangles). It is divergent in the limit of zero
interplanar coupling, similarly to the other coefficients shown in figure 2. It also decreases with
the interplanar coupling, but becomes nearly constant when λ is more than 0.2, which indicates
again that the thermal fluctuation is suppressed by the increasing interplanar coupling.

Note that the T 2-law that we obtained is in good agreement with the NMR experiments
on the AF materials [21–23], and the calculations made by the linear spin-wave approach
[26]. Although these materials have different structures, they can all be seen as 2D layered
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Figure 2. The interplanar coupling dependence of several coefficients. See the details in the text.

Figure 3. Zero-temperature magnetization versus the interplanar coupling (filled circles). Also
shown is the same quantity calculated from the linear spin-wave theory. The solid lines are guides
to the eye.

antiferromagnets with different effective interplanar couplings, which is the reason for the
similar behaviours (power laws) at finite temperature. This confirms that the T 4-law for the
spin-wave excitation is also reasonable at finite temperature for these antiferromagnets. What
is important is that in these materials, the power laws survive up to temperature TN/2. This
can be easily understood if we recall that the expansions are made in powers of kBT/J , which
is rather small as long as T is less than TN, for kBTN/J � 0.1–0.2. The advantage of our
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method is that we give the evolution of the spin-wave excitation and sublattice magnetization
with the interplanar coupling in an improved linear spin-wave approach, which will contribute
to improvement of the precision of the measurement of coupling constants by NMR or other
experiments.

The Néel temperature TN increases with the interplanar coupling. The gradually changed
Néel temperature can be estimated roughly from m(TN) = 0. In the small-coupling limit,
we have TN ≈ 1.243λ1/4J , i.e. the Néel temperature is proportional to one quarter of the
interplanar coupling. Thus, although λ can be quite small, the Néel temperature need not be
very small. For La2CuO4, λ is about 5 × 10−5, so TN is estimated to be 150 K, which is
qualitatively in agreement with the experimental result TN ≈ 300 K for La2CuO4.
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